2571519.85
Content-based Candidate Recommendation System for Jobs

Narek Hovsepyan

Key words: candidate recommendation, full-text search, natural language
processing, Solr, job parsing, candidate-job matching

This paper presents a content-based candidate recommender system which
is used to find the best candidates for the specified job. A variant of this
recommender system is currently used by Teamable, a San Francisco-based
software company that offers an intelligent employee referral platform. Our
approach mainly has two phases, indexing candidate information (title, skills,
location, etc.), then parsing job description/information to form a query, which
helps to determine the best candidates and suggest them accordingly.

Our primary study shows that this approach produces promising results.

Introduction. Today, recommender systems are being used in a number of
spheres. However, the type of recommendations provided, may be different
according to the domain of its use. For a candidate recommendation system, we
need to find a way to rank all the candidates for a specified job, having the job
description. The candidate recommender will help job providers to find and
reach out the best potential candidates.

Most of candidate recommendation systems [4, 1959-1965; 7, 169; 9, 1544-
1553; 11, 2943-2951] use collaborative filtering (CF) [3, 12-32; 8, 291-324; 10,
1-19] and only small amount of approaches [2, 215-220; 12, 37-45] include some
content-based approaches, which however are just used to solve so called cold-
start problem of CF approach and, in general, they are all heavily CF based
approaches.

Our solution focuses only on content-based recommendations which
perform better than existing solutions.

Datasets. We use two main datasets, skills/responsibilities dataset to extract
information from job description and job2candidates dataset for evaluation
purposes. Job2candidates dataset contains jobs and their suggestions from
candidates set, which is collected with the use of some open-source datasets and
partly our own data at Teamable.

Skills/responsibilities dataset. We have collected a big dataset of
skills/responsibilities which covers all job industries. Main sources for the
dataset were Stack Exchange websites, O*NET dataset [5] and LinkedIn skills

-30-

dataset. We've crawled all tags, skills from Stackexchange websites and
LinkedIn, which are used more than 100 times.

Job2candidate dataset. We have collected a job-candidate dataset, where
job information contains title and description and the candidate information
contains title, skills and bio (which also includes previous experience). Using
job and candidates sets, we've manually created the job2candidate dataset,
where for each pair of job and candidate we have label 1 if the candidate is a
good enough match for suggesting and 0 otherwise. Then merged it with our
internal dataset of “offers and hires”, which contains job and candidate pairs,
where the candidate hired or got an offer for that specific job. As a result,
dataset contains 3000+ job-candidate pairs with label 0 or 1. We’ve used this
dataset to evaluate solutions ability to filter out bad candidates and suggest only
good enough ones.

Candidate recommender for jobs. Our approach contains several parts as
shown in figure 1. At first, we index candidates in Solr [1] using all existing
information. Solr is an open-source enterprise-search platform, written in Java
and has some major features including full-text search, hit highlighting, faceted
search, real-time indexing, dynamic clustering, database integration, NoSQL
features and rich document handling.

Also, we extract information from job descriptions and then we use that
information to form a Solr query, where we have already indexed our
candidates’ information in a structured way.

Forming query from job information. Figure 1 also shows the main
components and steps for query forming. Query format is the same Solr query
format, which will help us just easily query Solr and get a response candidates
list with respective scores.

Requirements classifier. This module is responsible for classifying and
extracting the requirements section of the job description. It’s pretty obvious
that the main part of useful terms is located in the requirements section of the
job description. Here we use a simple keyword based approach to determine the
requirements section. At first, we divide the job description into paragraphs,
then with the use of two simple conditions try to find the paragraphs which are
including requirements. The first condition is requirements-like keywords
existence in a paragraph, the second one with the help of skills/responsibilities
dataset we can determine how many skills are included in a paragraph and if
that number is above the specified threshold that will indicate the paragraph is
about requirements.

—-31 -

‘ Candidate N7 ‘

Job N1 ‘ Candidate N2 ‘

‘ Candidate N... ‘

Requirements
classifier

|

Term extraction

Forming Solr query

Indexing candidate in Solr

Solr query

formation /

Figure 1: Candidate recommender system for jobs.

Search term extractor (STE). We use a skills/responsibilities dataset to
match and extract from the requirements section of the job description. It's a
simple keyword search algorithm which provides us with a list of useful terms
used to form a Solr query. The main disadvantage of this approach is that we
need to keep the dataset up to date to have new skills and responsibilities from
all industries.

Query formation. We need to form a Solr query which will be executed on
Solr engine and return candidates for suggestions sorted by Solr score. As
candidates have title, bio and skills field, Solr can be used to form subquery for
each field.

‘We have used job title and job description extracted terms joined with OR
operator as a subquery for candidate title and bio fields, while for the skills field
only the job description extracted terms joined with OR operator. Also, we
assign weights to each subquery, which helps to prioritize some fields over the
others for the term matching score. We’ve used grid-search algorithm to find

—-32 -

the best matching weights, and the results of the grid-search indicated that
titles need to have more priority than skills, and skills need to have more
priority than bios, which is pretty intuitive.

Seniority level extraction. Above described solution works pretty fine, but
has one issue connected with seniority levels. For example, if we need Senior
python engineer with skills [python, Django, databases], the same exact terms
can be matched in junior developers’ profiles, but we don’t have to suggest
them. To fix this issue, it made sense to have an extra feature seniority level,
which helps us to match candidates not only with terms, but also with seniority
level. For jobs, we use keyword search in title trying to extract experience
requirements from job description. For candidates, the same keyword search in
title and calculating experience years from previous work history. We've
defined 5 seniority levels, as shown in table 1.

Table 1: Seniority levels.

Level 0 Interns, juniors, ...

Level 1 Mid-level, assistants, ...

Level 2 Senior-level, ...

Level 3 Managers, team leads, ...

Level 4 Directors, senior managers, ...

Level 5 C-level executives, owners, founders, ...

After detecting the seniority level for candidates, we index them in Solr.
And the seniority level of the job is used in Solr query to suggest candidates
only with matching seniority levels.

Evaluation. As we mentioned above, we’ve used job2candidate dataset for
evaluation, but it’s only the first stage of our evaluation system. The metrics,
which we used in the first stage, are simply accuracy, recall and precision.

The second stage of evaluation is customer feedback/usage, where we have
defined a metric called ToplO-referrals. Topl0-referrals metric is calculated
using referral/hire events in our platform. Topl0-referrals metric shows how
many percent referrals/hires made by the customer from our top 10 suggestions.

Let’s denote each referred/hired candidate with x;. Define k; , which is
equal to 1 if x; is in the top 10 suggestions of recommendation, otherwise 0.

Topl0-referrals metric is calculated as shown below:

ic1 ki
N
where N is the number of referred/hired candidates.

— 33—

Here are the results of experiments during several months by some
existing algorithms and our approach.
Evaluation stage one results are shown in Table 2:

Table 2: Evaluation stage one, results.

Solution name Accuracy | Precision Recall

CF (without cold start solution) 68.91% 61.66% 74.12%
CF + content-based solution 71.32% 67.37% 77.01%

Our solution (without seniority level) 65.01% 63.63% 70.09%
Our solution (with seniority level) 76.01% 75.33% 78.50%

Our solution outperforms existing CF based solutions on the first stage of
evaluation. For the second stage of evaluation we’ve deployed our solutions for
100+ customers for several months (10000+ referred/hired candidates) in
Teamable platform. The results are shown in Table 3.

Table 3: Evaluation stage two, results.

Solution name Top10-referrals metric
CF (without cold start solution) 9.20%
CF + content-based solution 10.01%
Our solution (without seniority level) 8.51%
Our solution (with seniority level) 18.88%

The whole evaluation process shows that our solution significantly
outperforms other existing solutions. Also, our solution has no cold start
problem, which is a huge problem with new customers.

Conclusion. In this paper, we have described a new approach which
allowed us to outperform existing CF based approaches. Also, it has no cold
start problem and performs better both with or without existing data. The only
disadvantage of our approach is the necessity of keeping skills and
responsibilities dataset up to date to cover newly formed industries and skills.
From the execution time perspective, our solution works pretty fast, even with
more than 1 million candidates, the advantage mainly follows from Solr search
engine, thus the solution is scalable.

The next step for this approach is to handle candidate career pivots and
changes [6, 325-328], for example, a QA engineer’s career path can become
Software engineer, and detecting this kind of career continuations and changes
can help to suggest more matching candidates for jobs.

—34 —

10.

11.

12.

References

Apache Software Foundation, Solr, https://solr.apache.org/, retrieved:
20.08.2021.

Belsare R. G., Deshmukh D. V. “Employment Recommendation System
using Matching, Collaborative Filtering and Content Based
Recommendation”. Int.J. Comput. Appl. Technol. Res 7.6 (2018): 215-220.
Jie L., Dianshuang W., Mingsong M., WeiW., Guangquan Z.,
Recommender system application developments: a survey, Decis. Support
Syst. 74 (2015) 12-32.

Koh M. F, Yew C.C.. “Intelligent job matching with self-learning
recommendation engine. Procedia Manufacturing 3 (2015): 1959-1965.
“O*NET OnLine Help: The Database.” O*NET OnlLine, National Center for
O*NET Development, www.onetonline.org/help/onet/database. Accessed
23 August 2021.

Paparrizos I., Barla C., Aristides G.. “Machine learned job recommendation”.
Proceedings of the fifth ACM Conference on Recommender Systems.
2011: 325-328.

Patel R., Santosh K. V. “An Efficient Approach for Job Recommendation
System Based on Collaborative Filtering”. ICT Systems and Sustainability:
Proceedings of ICT4SD 2019, Volume 1 1077 (2020): 169.

Schafer J. B., et al. “Collaborative filtering recommender systems”. The
adaptive web. Springer, Berlin, Heidelberg, 2007. 291-324.

Shalaby, Walid, et al. “Help me find a job: A graph-based approach for job
recommendation at scale.” 2017 IEEE international conference on big data
(big data). IEEE, 2017: 1544-1553.

Su X., Taghi M.K. “A survey of collaborative filtering techniques”.
Advances in artificial intelligence 2009 (2009): 1-19.

Yan X, et al. “Social skill validation at linkedin”. Proceedings of the 25
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2019: 2943-2951.

Yang S., et al. “Combining content-based and collaborative filtering for job
recommendation system: A cost-sensitive Statistical Relational Learning
approach”. Knowledge-Based Systems 136 (2017): 37-45.

—-35 -

Uohmuwwnuintinh hwdwp phljumsniukp wpwewnpyny hwdwywpg
hhdujué nbnbjuunynpjuid pnuwiinpuynipjui Jpu

Lupkl Znjulihpul
Udthnthnud

Zuwhgmguyhli pwnkp. phiiwonth wnwowplnyemnil, wipnnowlmi
wkpumnp npnimd, phwlwl jEqih Wowlnid, Solr, wopununnunnknh
Lhwpwgpmpyul owhnid, pbkihwdni-uppiumnunnky hudwuumnuupi-
abgnid

Znpjusnid - tWjupugpuws b nbnijunynipjut pondubgulnipjut
Ypu hhdudws phijuwsniutp wnwowplny hwdwlwpg, npp ogunid k
quiknt jwjwugny phljtwsniikpht’ npdws wohwnwntnh hudwp: Upu
nwdnidp oquuugnpdynid k Teamable puljtpnipmitnid b oqunid £ hwdw-
lunpn puybpnipitubphtt quuknt hpkug puthnip woliwwnwnbnbtph
hwdwp jujugnyt phljuwsniibpht: Cinhwinip ndnudp punugus k
kpym hhdtwlwl dwuhg, wowehip phlijuwsniubph wijubkph Ykppni-
snipnil, Upwlnud, gmgswnpnud, b kplypopyp wouwinwnbnh tupw-
gpnipjull yhpnisnipinil, dowlnud, Jupunp pwbwih pwntph pnipu
hwunid nt hwpgdwb Jupnignid: Yunnigdws hwpgnidt oqunid £ qunibiny
wpnkt hull gnigswynpdws phljtwsniutnh puqunipnithg jwjwgnyuuk-
phi:

Ljwpuqpusd b twb wppniiputph qghwhwndwt Gplthny dkow-
thqup b hudbdwwnwlwt Jbpnidnipinit wpnkt hull gnjnipnit niukgnn
huwdwjupgbph Wqundwdp: Annipnit ntikgny hhdtwljut jnsnudubp
wohmwnnid ki Ynpjupnpunhy quuuwt vhongny, b wyu dkpnnh hhduw-
Jul juinhputphg dkyp unp phlijuwsnittph b wpwwnmwwnbtnbinh nhypnid
wnwownplutph pugujumpniut t: Ukp wnwewnplyws jnisnidp pnduib-
nuinipjut ypu hhdtdwsé wnwowplnn hwdwlwupg E b uwgh poy k
) hu ntikbw) (] wnwewnpljubp tnyuhuly inp phjuwsniubph b wppuw-
wnwwnbnbph nhuypnud:

znnJudnid ujupugpyus (nisnid oqunid £ qunubint jujugny phl-
twdniutipht b gnyg E mmwhu juy wpnyniupbip:

— 36—

Cucrema pexoMeHZanuii KaHAMAATOB Ha paboTy
Ha OCHOBe COZiepXXKaHuA WH(popManuu
Hapex Oscenarn
Pesiome

KmroveBrre croBa: pexomeHzanmsa KaHAHAATA, TOJIHOTEKCTOBBIH IIOHCK,
00pabOTKa eCTECTBEHHOIO A35IKa, Solr, 00pabOoTKa JO/DKHOCTHEIX HHCTPYKIHH,
KaHZHZATOB HA paboTy

B crarbe OmMCHIBA€TCS OCHOBAHHAsS Ha COJAEPXKAHHH CHCTEMa PEKOMeEH-
Jauyii KaHAWJaTOB, IIOMOTAIOWas HAWTU IyYIIMX KaHAWZATOB Ha BAaKaHCHIO.
OTO pellleHHe HCIOIB3yeTcss Teamable M moMoraer KOMIAaHHAM-KIMEHTaM
HAXOZUTH JTy4IINX KAaHAUJATOB Ha cBoM BakaHcuu. OOllee pelleHne COCTOUT U3
IBYX OCHOBHBIX YaCTeil: IlepBasd — 5TO aHaJIu3, 00paboTKa, HHAEKCAIUA TaHHBIX
KaHIUAATOB, a BTOpas — aHaniu3 WHPOpMALMH OnncaHue paboTsI, paspaboTka,
M3BJIeYeHHe BAKHBIX KJIIOUEBBIX CJIIOB K IIOCTPOEHWe 3ampoca. BcTpoeHHBIM
3aIIpOC ITOMOTaeT HAaMTH JY4IINX U3 Y)Ke IPOUH/IeKCHPOBAHHBIX KaHIUAATOB.

OmnucsIBaeTCs TAKKe ABYyXITAITHBINA MeXaHU3M OIeHKU BBIGOPKH M CPaBHU-
TeJIbHBIN aHan3 CyH.IeCTByIOH.II/IX CHUCTEM. CYH.IGCTBYIOH.H/IG penieHnsas B OCHOB-
HOM pPaboTaloT dYepe3 KOJIAGOPAaTHBHYIO (QUIBTPALIMIO, U OFZHA M3 OCHOBHBIX
IpoGJIeM 3TOr0 MeTOZA — OTCYTCTBUE IIPeAJIOXKEHUN [JIs HOBBIX KaHIWJATOB U
BakaHcwuil. IlpesaraeMmoe HaMu pelreHre IIPeACTaBIsLeT COOON CHCTEMY PEKO-
MeHZAIKi, OCHOBAHHYIO Ha COJEPXXaHWW, M IIO3BOJISET ITOAydYaTh XOPOIIHE
pPEeKOMeHAAIUHY AaXKe AT HOBBIX KaHAMJATOB X HOBBIX BAKAHCHL.

OmnucaHHOe B CTaThe pelleHHe [TOMOTaeT HAMTH JIyYLINX KaHAULATOB U
IIOKa3bIBaeT XOPOILINe Pe3yIbTaThL.

Ukpyuyugdty £ 25.10.2021 p.
Qpujnuyl £ 27.09.2021 p.
Cunm ity Enyugpmpjui 29.11.2021 p.

—-37 -

	Untitled-1 - Copy
	B-2-Prak-14.12.2021
	1-3 ej
	4-6 ej uxx
	7
	1-3 ej
	VERJIN EJN - Copy

	Untitled-1

